A Liouville Property of Holomorphic Maps
نویسنده
چکیده
We prove a Liouville property of holomorphic maps from a complete Kähler manifold with nonnegative holomorphic bisectional curvature to a complete simply connected Kähler manifold with a certain assumption on the sectional curvature.
منابع مشابه
Convex Hull Properties of Harmonic Maps
In 1975, Yau [Y] proved, by way of a gradient estimate, that a complete manifold M with non-negative Ricci curvature must satisfy the strong Liouville property for harmonic functions. The strong Liouville property (Liouville property) asserts that any positive (bounded) harmonic function defined on M must be identically constant. In 1980, Cheng [C] generalized the gradient estimate to harmonic ...
متن کاملWang A new approach to some nonlinear geometric equations in dimension two
We give new arguments for several Liouville type results related to the equation − u = K e2u . The new approach is based on the holomorphic function associated with any solution, which plays a similar role as the Hopf differential for harmonic maps from a surface.
متن کاملRigidity and Holomorphic Segre Transversality for Holomorphic Segre Maps
Let Hn and HN denote the complexifications of Heisenberg hypersurfaces in Cn and CN , respectively. We show that non-degenerate holomorphic Segre mappings from Hn into HN with N ≤ 2n− 2 possess a partial rigidity property. As an application, we prove that the holomorphic Segre non-transversality for a holomorphic Segre map from Hn into HN with N ≤ 2n− 2 propagates along Segre varieties. We also...
متن کاملSome Global Results on Holomorphic Lagrangian Fibrations
The globalization of some local structures as the complex Liouville vector field, complex Liouville 1-form, totally singular complex Hamiltonians and complex nonlinear connection on holomorphic Lagrangian fibrations is studied. Also, we give a new characterization of equivalence of two holomorphic Lagrangian foliations. The notions are introduced here by analogy with the real case, see [16, 17,...
متن کاملLiouville and Carathéodory Coverings in Riemannian and Complex Geometry
A Riemannian manifold resp. a complex space X is called Liouville if it carries no nonconstant bounded harmonic resp. holomorphic functions. It is called Carathéodory, or Carathéodory hyperbolic, if bounded harmonic resp. holomorphic functions separate the points of X . The problems which we discuss in this paper arise from the following question: When a Galois covering X with Galois group G ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013