A Liouville Property of Holomorphic Maps

نویسنده

  • Chengjie Yu
چکیده

We prove a Liouville property of holomorphic maps from a complete Kähler manifold with nonnegative holomorphic bisectional curvature to a complete simply connected Kähler manifold with a certain assumption on the sectional curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Hull Properties of Harmonic Maps

In 1975, Yau [Y] proved, by way of a gradient estimate, that a complete manifold M with non-negative Ricci curvature must satisfy the strong Liouville property for harmonic functions. The strong Liouville property (Liouville property) asserts that any positive (bounded) harmonic function defined on M must be identically constant. In 1980, Cheng [C] generalized the gradient estimate to harmonic ...

متن کامل

Wang A new approach to some nonlinear geometric equations in dimension two

We give new arguments for several Liouville type results related to the equation − u = K e2u . The new approach is based on the holomorphic function associated with any solution, which plays a similar role as the Hopf differential for harmonic maps from a surface.

متن کامل

Rigidity and Holomorphic Segre Transversality for Holomorphic Segre Maps

Let Hn and HN denote the complexifications of Heisenberg hypersurfaces in Cn and CN , respectively. We show that non-degenerate holomorphic Segre mappings from Hn into HN with N ≤ 2n− 2 possess a partial rigidity property. As an application, we prove that the holomorphic Segre non-transversality for a holomorphic Segre map from Hn into HN with N ≤ 2n− 2 propagates along Segre varieties. We also...

متن کامل

Some Global Results on Holomorphic Lagrangian Fibrations

The globalization of some local structures as the complex Liouville vector field, complex Liouville 1-form, totally singular complex Hamiltonians and complex nonlinear connection on holomorphic Lagrangian fibrations is studied. Also, we give a new characterization of equivalence of two holomorphic Lagrangian foliations. The notions are introduced here by analogy with the real case, see [16, 17,...

متن کامل

Liouville and Carathéodory Coverings in Riemannian and Complex Geometry

A Riemannian manifold resp. a complex space X is called Liouville if it carries no nonconstant bounded harmonic resp. holomorphic functions. It is called Carathéodory, or Carathéodory hyperbolic, if bounded harmonic resp. holomorphic functions separate the points of X . The problems which we discuss in this paper arise from the following question: When a Galois covering X with Galois group G ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013